Кислоты и основания. Основания. Химические свойства и способы получения Основные химические свойства кислот оснований солей


Общие свойства оснований обусловлены наличием в их растворах иона ОН - , создающего в растворе щелочную среду (фенолфталеин окрашивается в малиновый цвет, метилоранж – в желтый, лакмус – в синий).

1. Химические свойства щелочей:

1) взаимодействие с кислотными оксидами:

2KOH+CO 2 ®K 2 CO 3 +H 2 O;

2) реакция с кислотами (реакция нейтрализации):

2NaOH+ H 2 SO 4 ®Na 2 SO 4 +2H 2 O;

3) взаимодействие с растворимыми солями (только в том случае, если при действии щелочи на растворимую соль выпадает осадок или выделяется газ):

2NaOH+ CuSO 4 ®Cu(OH) 2 ¯+Na 2 SO 4 ,

Ba(OH) 2 +Na 2 SO 4 ®BaSO 4 ¯+2NaOH, KOH(конц.)+NH 4 Cl(крист.)®NH 3 ­+KCl+H 2 O.

2. Химические свойства нерастворимых оснований:

1) взаимодействие оснований с кислотами:

Fe(OH) 2 +H 2 SO 4 ®FeSO 4 +2H 2 O;

2) разложение при нагревании. Нерастворимые основания при нагревании разлагаются на основный оксид и воду:

Cu(OH) 2 ®CuO+H 2 O

Конец работы -

Эта тема принадлежит разделу:

Атомно молекулярные учения в химии. Атом. Молекула. Химический элемент. Моль. Простые сложные вещества. Примеры

Атомно молекулярные учения в химии атом молекула химический элемент моль простые сложные вещества примеры.. теоретическую основу современной химии составляет атомно молекулярное.. атомы мельчайшие химические частицы являющиеся пределом химического..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Получение оснований
1. Получение щелочей: 1) взаимодействие щелочных или щелочноземельных металлов или их оксидов с водой: Сa+2H2O®Ca(OH)2+H

Номенклатура кислот
Названия кислот производятся от того элемента, от которого образована кислота. При этом в названии бескислородных кислот обычно имеется окончание –водородная: HCl – хлороводородная, HBr – бромоводо

Химические свойства кислот
Общие свойства кислот в водных растворах обусловлены присутствием ионов Н+, образующихся при диссоциации молекул кислоты, таким образом, кислоты – это доноры протонов: HxAn«xH+

Получение кислот
1) взаимодействие кислотных оксидов с водой: SO3+H2O®H2SO4, P2O5+3H2O®2H3PO4;

Химические свойства кислых солей
1) кислые соли содержат атомы водорода, способные принимать участие в реакции нейтрализации, поэтому они могут реагировать со щелочами, превращаясь в средние или другие кислые соли – с меньшим числ

Получение кислых солей
Кислую соль можно получить: 1) реакцией неполной нейтрализации многоосновной кислоты основанием: 2H2SO4+Cu(OH)2®Cu(HSO4)2+2H

Основные соли
Основными (гидроксосолями) называются соли, которые образуются в результате неполного замещения гидроксидных ионов основания анионами кислот. Однокислотные основания, например, NaOH, KOH,

Химические свойства основных солей
1) основные соли содержат гидроксогруппы, которые могут принимать участие в реакции нейтрализации, поэтому они могут реагировать с кислотами, превращаясь в средние соли или в основные соли с меньши

Получение основных солей
Основную соль можно получить: 1) реакцией неполной нейтрализации основания кислотой: 2Cu(OH)2+H2SO4®(CuOH)2SO4+2H2

Средние соли
Средними солями называюся продукты полного замещения Н+-ионов кислоты ионами металлов; они также могут рассматриваться как продукты полного замещения ОН-ионов основания аниона

Номенклатура средних солей
В русской номенклатуре (используемой в технологической практике) существует следующий порядок наименования средних солей: к корню названия кислородсодержащей кислоты прибавляют слово

Химические свойства средних солей
1) Почти все соли являются ионными соединениями, поэтому в расплаве и в водном растворе они диссоциируют на ионы (при пропускании тока через растворы или расплавы солей идет процесс электролиза).

Получение средних солей
Большая часть методов получения солей основана на взаимодействии веществ противоположной природы – металлов с неметаллами, кислотных оксидов с основными, оснований с кислотами (см. таблицу 2).

Строение атома
Атом – это электронейтральная частица, состоящая из положительно заряженного ядра и отрицательно заряженных электронов. Порядковый номер элемента в Периодической таблице элементов равен заряду ядра

Состав атомных ядер
Ядро состоит из протонов и нейтронов. Количество протонов равно порядковому номеру элемента. Число нейтронов в ядре равно разности между массовым числом изотопа и по

Электрон
Вокруг ядра вращаются электроны по определенным стационарныморбитам. Двигаясь по своей орбите, электрон не излучает и не поглощает электромагнитную энергию. Излучение или поглощение энергии происхо

Правило заполнения электронных уровней, подуровней элементов
Число электронов, которые могут находиться на одном энергетическом уровне, определяется формулой 2n2, где n – номер уровня. Максимальное заполнение первых четырех энергетических уровней: для первог

Энергия ионизации, сродства к электрону, электроотрицательность
Энергия ионизации атома. Энергия, необходимая для отрыва электрона от невозбужденного атома, называется первой энергией (потенциалом) ионизации I: Э + I = Э+ + е- Энергия ионизаци

Ковалентная связь
В большинстве случаев при образовании связи происходит обобществление электронов связываемых атомов. Такой тип химической связи называют ковалентной связью (приставка "ко-" в латинском яз

Сигма и пи связи
Сигма (σ)-, пи (π)-связи - приближенное описание видов ковалентных связей в молекулах различных соединений, σ-связь характеризуется тем, что плотность электронного облака максимальна

Образование ковалентной связи по донорно-акцепторному механизму
Кроме изложенного в предыдущем разделе гомогенного механизма образования ковалентной связи, существует гетерогенный механизм - взаимодействие разноименно заряженных ионов - протона H+ и

Химическая связь и геометрия молекул. BI3, PI3
рисунок 3.1Сложение дипольных элементов в молекулах NH3 и NF3

Полярная и неполярная связь
Ковалентная связь образуется в результате обобществления электронов (с образованием общих электронных пар), которое происходит в ходе перекрывания электронных облаков. В образовании

Ионная связь
Ионная связь– это химическая связь, которая осуществляется за счет электростатического взаимодействия противоположно заряженных ионов. Таким образом, процесс образования и

Степень окисления
Валентность 1. Валентность - способность атомов химических элементов образовывать определенное число химических связей. 2. Значения валентности изменяются от I до VII (редко VIII). Валент

Водородная связь
Помимо различных гетерополярных и го-меополярных связей, существует еще один особый вид связи, который в последние два десятилетия привлекает все большее внимание химиков. Это так называемая водоро

Кристаллические решётки
Итак, кристаллическая структура характеризуется правильным (регулярным) расположением частиц в строго определенных местах в кристалле. При мысленном соединении этих точек линиями получаются простра

Растворы
Если в сосуд с водой поместить кристаллы поваренной соли, сахара или перманганата калия (марганцовки), то мы можем наблюдать, как количество твердого вещества постепенно уменьшается. При этом вода,

Электролитическая диссоциация
Растворы всех веществ можно разделить на две группы: электролиты-проводят электрический ток, неэлектролиты-проводниками не являются. Это деление является условным, потому что все

Механизм диссоциации
Молекулы воды являются дипольными, т.е. один конец молекулы заряжен отрицательно, другой-положительно. Молекула отрицательным полюсом подходит к иону натрия, положительным-к иону хлора; окружают ио

Ионное произведение воды
Водородный показатель (рН) величина, характеризующая актив­ность или концентрацию ионов водорода в растворах. Водородный показатель обозначается рН. Водородный показатель численно ра

Химическая реакция
Химическая реакция - это превращение одних веществ в другие. Впрочем, такое определение нуждается в одном существенном дополнении. В ядерном реакторе или в ускорителе тоже одни вещества превращаютс

Методы расстановки коэффициентов в ОВР
Метод электронного баланса 1). Записываем уравнение химической реакции KI + KMnO4 → I2 + K2MnO4 2). Находим атомы, изме

Гидролиз
Гидролиз – процесс обменного взаимодействия ионов соли с водой, приводящий к образованию малодиссоциированных веществ и сопровождающийся изменением реакции (pH) среды. Суть

Скорость химических реакций
Скорость реакции определяется изменением молярной концентрации одного из реагирующих веществ: V = ± ((С2 – С1) / (t2 - t

Факторы, влияющие на скорость химических реакций
1. Природа реагирующих веществ. Большую роль играет характер химических связей и строение молекул реагентов. Реакции протекают в направлении разрушения менее прочных связей и образования веществ с

Энергия активации
Столкновение химических частиц приводит к химическому взаимодействию лишь в том случае, если сталкивающиеся частицы обладают энергией, превышающей некоторую определенную величину. Рассмотрим взаимо

Катализ катализатор
Многие реакции можно ускорить или замедлить путем введения некоторых веществ. Добавляемые вещества не участвуют в реакции и не расходуются в ходе ее протекания, но оказывают существенное влияние на

Химическое равновесие
Химические реакции, которые протекают со сравнимыми скоростями в обоих направлениях, называются обратимыми. В таких реакциях образуются равновесные смеси реагентов и продуктов, состав которы

Принцип Ле Шателье
Принцип Ле Шателье говорит о том, что для смещения равновесия вправо нужно, во-первых, повышать давление. Действительно, при повышении давления система будет «сопротивляться» возрастанию кон

Факторы влияющие на скорость химической реакции
Факторы, влияющие на скорость химической реакции Увеличивают скорость Уменьшают скорость Наличие химически активных реагентов

Закон Гесса
Пользуясь табличными значениями

Тепловой эффект
В ходе реакции происходит разрыв связей в исходных веществах и образование новых связей в продуктах реакции. Поскольку образование связи идет с выделением, а ее разрыв - с поглощением энергии, то х

Основания – сложные вещества, состоящие из атома металла и одной или нескольких гидроксильных групп. Общая формула оснований Ме(ОН) n . Основания (с точки зрения теории электролитической диссоциации) – это электролиты, диссоциирующие при растворении в воде с образованием катионов металла и гидроксид-ионов ОН – .

Классификация. По растворимости в воде основания делят на щелочи (растворимые в воде основания) и нерастворимые в воде основания . Щелочи образуют щелочные и щелочно-земельные металлы, а также некоторые другие элементы-металлы. По кислотности (числу ионов О Н – , образующихся при полной диссоциации, или количеству ступеней диссоциации) основания подразделяют на однокислотные (при полной диссоциации получается один ион О Н – ; одна ступень диссоциации) и многокислотные (при полной диссоциации получается больше одного иона О Н – ; более одной ступени диссоциации). Среди многокислотных оснований различают двухкислотные (например, Sn(OH) 2 ), трехкислотные (Fe(OH) 3) и четырехкислотные (Th(OH) 4). Однокислотным является, например, основание КОН.

Выделяют группу гидроксидов, которые проявляют химическую двойственность. Они взаимодействую как с основаниями, так и с кислотами. Это амфотерные гидроксиды (см. таблицу 1) .

Таблица 1 - Амфотерные гидроксиды

Амфотерный гидроксид (основная и кислотная форма)

Кислотный остаток и его валентность

Комплексный ион

Zn(OH) 2 / H 2 ZnO 2

ZnO 2 (II)

2–

Al(OH) 3 / HAlO 2

AlO 2 (I)

– , 3–

Be(OH) 2 / H 2 BeO 2

BeO 2 (II)

2–

Sn(OH) 2 / H 2 SnO 2

SnO 2 (II)

2–

Pb(OH) 2 / H 2 PbO 2

PbO 2 (II)

2–

Fe(OH) 3 / HFeO 2

FeO 2 (I)

– , 3–

Cr(OH) 3 / HCrO 2

CrO 2 (I)

– , 3–

Физические свойства. Основания - твердые вещества различных цветов и различной растворимости в воде.

Химические свойства оснований

1) Диссоциация : КОН + n Н 2 О К + × m Н 2 О + ОН – × d Н 2 О или сокращенно: КОН К + + ОН – .

Многокислотные основания диссоциируют по нескольким ступеням (в основном диссоциация протекает по первой ступени). Например, двухкислотное основание Fe(OH) 2 диссоциирует по двум ступеням:

Fe(OH) 2 FeOH + + OH – (1 ступень);

FeOH + Fe 2+ + OH – (2 ступень).

2) Взаимодействие с индикаторами (щелочи окрашивают фиолетовый лакмус в синий цвет, метилоранж – в желтый, а фенолфталеин – в малиновый):

индикатор + ОН – (щелочь )окрашенное соединение.

3 ) Разложение с образованием оксида и воды (см. таблицу 2 ). Гидроксиды щелочных металлов устойчивы к нагреванию (плавятся без разложения). Гидроксиды щелочно-земельных и тяжелых металлов обычно легко разлагаются. Исключение составляет Ba(OH) 2 , у которого t разл достаточно высока (примерно 1000 ° C ).

Zn(OH) 2 ZnO + H 2 O .

Таблица 2 - Температуры разложения некоторых гидроксидов металлов

Гидроксид t разл , ° C Гидроксид t разл , ° C Гидроксид t разл , ° C
LiOH 925 Cd(OH) 2 130 Au(OH) 3 150
Be(OH) 2 130 Pb(OH) 2 145 Al (OH) 3 >300
Ca(OH) 2 580 Fe(OH) 2 150 Fe(OH) 3 500
Sr(OH) 2 535 Zn (OH) 2 125 Bi (OH) 3 100
Ba(OH) 2 1000 Ni (OH) 2 230 In (OH) 3 150

4 ) Взаимодействие щелочей с некоторыми металлами (например, Al и Zn ):

В растворе: 2Al + 2NaOH + 6H 2 O ® 2Na + 3H 2 ­

2Al + 2OH – + 6H 2 О ® 2 – + 3H 2 ­ .

При сплавлении: 2Al + 2NaOH + 2H 2 O 2NaAl О 2 + 3H 2 ­ .

5 ) Взаимодействие щелочей с неметаллами :

6 NaOH + 3Cl 2 5Na Cl + NaClO 3 + 3H 2 O .

6) Взаимодействие щелочей с кислотными и амфотерными оксидами :

2NaOH + СО 2 ® Na 2 CO 3 + H 2 O 2OH – + CO 2 ® CO 3 2– + H 2 O .

В растворе: 2NaOH + ZnO + H 2 O ® Na 2 2OH – + ZnO + H 2 О ® 2– .

При сплавлении с амфотерным оксидом: 2NaOH + ZnO Na 2 ZnO 2 + H 2 O .

7) Взаимодействие оснований с кислотами :

H 2 SO 4 + Ca(OH) 2 ® CaSO 4 ¯ + 2H 2 O 2H + + SO 4 2– + Ca 2+ +2OH – ® CaSO 4 ¯ + 2H 2 O

H 2 SO 4 + Zn(OH) 2 ® ZnSO 4 + 2H 2 O 2H + + Zn(OH) 2 ® Zn 2+ + 2H 2 O.

8) Взаимодействие щелочей с амфотерными гидроксидами (см. таблицу 1 ):

В растворе: 2NaOH + Zn(OH) 2 ® Na 2 2OH – + Zn(OH) 2 ® 2–

При сплавлении: 2NaOH + Zn(OH) 2 Na 2 ZnO 2 + 2H 2 O .

9 ) Взаимодействие щелочей с солями. В реакцию вступают соли, которым соответствует нерастворимое в воде основание :

CuS О 4 + 2NaOH ® Na 2 SO 4 + Cu(OH) 2 ¯ Cu 2+ + 2OH – ® Cu(OH) 2 ¯ .

Получение. Нерастворимые в воде основания получают путем взаимодействия соответствующей соли со щелочью:

2NaOH + ZnS О 4 ® Na 2 SO 4 + Zn(OH) 2 ¯ Zn 2+ + 2OH – ® Zn(OH) 2 ¯ .

Щелочи получают :

1) Взаимодействием оксида металла с водой :

Na 2 O + H 2 O ® 2NaOH CaO + H 2 O ® Ca(OH) 2 .

2) Взаимодействием щелочных и щелочно-земельных металлов с водой :

2Na + H 2 O ® 2NaOH + H 2 ­ Ca + 2H 2 O ® Ca(OH) 2 + H 2 ­ .

3) Электролизом растворов солей :

2NaCl + 2H 2 O H 2 ­ + 2NaOH + Cl 2 ­.

4 ) Обменным взаимодействием гидроксидов щелочно-земельных металлов с некоторыми солями . В ходе реакции должна обязательно получаться нерастворимая соль .

Ba(OH) 2 + Na 2 CO 3 ® 2NaOH + BaCO 3 ¯ Ba 2 + + CO 3 2 – ® BaCO 3 ¯ .

Л.А. Яковишин

Основания (гидроксиды) – сложные вещества, молекулы которых в своём составе имеют одну или несколько гидрокси-групп OH. Чаще всего основания состоят из атома металла и группы OH. Например, NaOH – гидроксид натрия, Ca(OH) 2 – гидроксид кальция и др.

Существует основание – гидроксид аммония, в котором гидрокси-группа присоединена не к металлу, а к иону NH 4 + (катиону аммония). Гидроксид аммония образуется при растворении аммиака в воде (реакции присоединения воды к аммиаку):

NH 3 + H 2 O = NH 4 OH (гидроксид аммония).

Валентность гирокси-группы – 1. Число гидроксильных групп в молекуле основания зависит от валентности металла и равно ей. Например, NaOH, LiOH, Al (OH) 3 , Ca(OH) 2 , Fe(OH) 3 и т.д.

Все основания – твёрдые вещества, которые имеют различную окраску. Некоторые основания хорошо растворимы в воде (NaOH, KOH и др.). Однако большинство из них в воде не растворяются.

Растворимые в воде основания называются щелочами. Растворы щелочей «мыльные», скользкие на ощупь и довольно едкие. К щелочам относят гидроксиды щелочных и щелочноземельных металлов (KOH, LiOH, RbOH, NaOH, CsOH, Ca(OH) 2 , Sr(OH) 2 , Ba(OH) 2 и др.). Остальные являются нерастворимыми.

Нерастворимые основания – это амфотерные гидроксиды, которые при взаимодействии с кислотами выступают как основания, а со щёлочью ведут себя, как кислоты.

Разные основания отличаются разной способностью отщеплять гидрокси-группы, поэтому признаку они делятся на сильные и слабые основания.

Сильные основания в водных растворах легко отдают свои гидрокси-группы, а слабые – нет.

Химические свойства оснований

Химические свойства оснований характеризуются отношением их к кислотам, ангидридам кислот и солям.

1. Действуют на индикаторы . Индикаторы меняют свою окраску в зависимости от взаимодействия с разными химическими веществами. В нейтральных растворах – они имеют одну окраску, в растворах кислот – другую. При взаимодействии с основаниями они меняют свою окраску: индикатор метиловый оранжевый окрашивается в жёлтый цвет, индикатор лакмус – в синий цвет, а фенолфталеин становится цвета фуксии.

2. Взаимодействуют с кислотными оксидами с образованием соли и воды:

2NaOH + SiO 2 → Na 2 SiO 3 + H 2 O.

3. Вступают в реакцию с кислотами, образуя соль и воду. Реакция взаимодействия основания с кислотой называется реакцией нейтрализации, так как после её окончания среда становится нейтральной:

2KOH + H 2 SO 4 → K 2 SO 4 + 2H 2 O.

4. Реагируют с солями, образуя новые соль и основание:

2NaOH + CuSO 4 → Cu(OH) 2 + Na 2 SO 4.

5. Способны при нагревании разлагаться на воду и основной оксид:

Cu(OH) 2 = CuO + H 2 O.

Остались вопросы? Хотите знать больше об основаниях?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Химические свойства основных классов неорганических соединений

Кислотные оксиды

  1. Кислотный оксид + вода = кислота (исключение - SiO 2)
    SO 3 + H 2 O = H 2 SO 4
    Cl 2 O 7 + H 2 O = 2HClO 4
  2. Кислотный оксид + щелочь = соль + вода
    SO 2 + 2NaOH = Na 2 SO 3 + H 2 O
    P 2 O 5 + 6KOH = 2K 3 PO 4 + 3H 2 O
  3. Кислотный оксид + основный оксид = соль
    CO 2 + BaO = BaCO 3
    SiO 2 + K 2 O = K 2 SiO 3

    Основные оксиды

    1. Основный оксид + вода = щелочь (в реакцию вступают оксиды щелочных и щелочноземельных металлов)
      CaO + H 2 O = Ca(OH) 2
      Na 2 O + H 2 O = 2NaOH
    2. Основный оксид + кислота = соль + вода
      CuO + 2HCl = CuCl 2 + H 2 O
      3K 2 O + 2H 3 PO 4 = 2K 3 PO 4 + 3H 2 O
    3. Основный оксид + кислотный оксид = соль
      MgO + CO 2 = MgCO 3
      Na 2 O + N 2 O 5 = 2NaNO 3

      Амфотерные оксиды

      1. Амфотерный оксид + кислота = соль + вода
        Al 2 O 3 + 6HCl = 2AlCl 3 + 3H 2 O
        ZnO + H 2 SO 4 = ZnSO 4 + H 2 O
      2. Амфотерный оксид + щелочь = соль (+ вода)
        ZnO + 2KOH = K 2 ZnO 2 + H 2 O (Правильнее: ZnO + 2KOH + H 2 O = K 2 )
        Al 2 O 3 + 2NaOH = 2NaAlO 2 + H 2 O (Правильнее: Al 2 O 3 + 2NaOH + 3H 2 O = 2Na)
      3. Амфотерный оксид + кислотный оксид = соль
        ZnO + CO 2 = ZnCO 3
      4. Амфотерный оксид + основный оксид = соль (при сплавлении)
        ZnO + Na 2 O = Na 2 ZnO 2
        Al 2 O 3 + K 2 O = 2KAlO 2
        Cr 2 O 3 + CaO = Ca(CrO 2) 2

        Кислоты

        1. Кислота + основный оксид = соль + вода
          2HNO 3 + CuO = Cu(NO 3) 2 + H 2 O
          3H 2 SO 4 + Fe 2 O 3 = Fe 2 (SO 4) 3 + 3H 2 O
        2. Кислота + амфотерный оксид = соль + вода
          3H 2 SO 4 + Cr 2 O 3 = Cr 2 (SO 4) 3 + 3H 2 O
          2HBr + ZnO = ZnBr 2 + H 2 O
        3. Кислота + основание = соль + вода
          H 2 SiO 3 + 2KOH = K 2 SiO 3 + 2H 2 O
          2HBr + Ni(OH) 2 = NiBr 2 + 2H 2 O
        4. Кислота + амфотерный гидроксид = соль + вода
          3HCl + Cr(OH) 3 = CrCl 3 + 3H 2 O
          2HNO 3 + Zn(OH) 2 = Zn(NO 3) 2 + 2H 2 O
        5. Сильная кислота + соль слабой кислоты = слабая кислота + соль сильной кислоты
          2HBr + CaCO 3 = CaBr 2 + H 2 O + CO 2
          H 2 S + K 2 SiO 3 = K 2 S + H 2 SiO 3
        6. Кислота + металл (находящийся в ряду напряжений левее водорода) = соль + водород
          2HCl + Zn = ZnCl 2 + H 2
          H 2 SO 4 (разб.) + Fe = FeSO 4 + H 2
          Важно: кислоты-окислители (HNO 3 , конц. H 2 SO 4) реагируют с металлами по-другому.

        Амфотерные гидроксиды

        1. Амфотерный гидроксид + кислота = соль + вода
          2Al(OH) 3 + 3H 2 SO 4 = Al 2 (SO 4) 3 + 6H 2 O
          Be(OH) 2 + 2HCl = BeCl 2 + 2H 2 O
        2. Амфотерный гидроксид + щелочь = соль + вода (при сплавлении)
          Zn(OH) 2 + 2NaOH = Na 2 ZnO 2 + 2H 2 O
          Al(OH) 3 + NaOH = NaAlO 2 + 2H 2 O
        3. Амфотерный гидроксид + щелочь = соль (в водном растворе)
          Zn(OH) 2 + 2NaOH = Na 2
          Sn(OH) 2 + 2NaOH = Na 2
          Be(OH) 2 + 2NaOH = Na 2
          Al(OH) 3 + NaOH = Na
          Cr(OH) 3 + 3NaOH = Na 3

          Щелочи

          1. Щелочь + кислотный оксид = соль + вода
            Ba(OH) 2 + N 2 O 5 = Ba(NO 3) 2 + H 2 O
            2NaOH + CO 2 = Na 2 СO 3 + H 2 O
          2. Щелочь + кислота = соль + вода
            3KOH + H 3 PO 4 = K 3 PO 4 + 3H 2 O
            Bа(OH) 2 + 2HNO 3 = Ba(NO 3) 2 + 2H 2 O
          3. Щелочь + амфотерный оксид = соль + вода
            2NaOH + ZnO = Na 2 ZnO 2 + H 2 O (Правильнее: 2NaOH + ZnO + H 2 O = Na 2 )
          4. Щелочь + амфотерный гидроксид = соль (в водном растворе)
            2NaOH + Zn(OH) 2 = Na 2
            NaOH + Al(OH) 3 = Na
          5. Щелочь + растворимая соль = нерастворимое основание + соль
            Ca(OH) 2 + Cu(NO 3) 2 = Cu(OH) 2 + Ca(NO 3) 2
            3KOH + FeCl 3 = Fe(OH) 3 + 3KCl
          6. Щелочь + металл (Al, Zn) + вода = соль + водород
            2NaOH + Zn + 2H 2 O = Na 2 + H 2
            2KOH + 2Al + 6H 2 O = 2K + 3H 2

            Соли

            1. Соль слабой кислоты + сильная кислота = соль сильной кислоты + слабая кислота
              Na 2 SiO 3 + 2HNO 3 = 2NaNO 3 + H 2 SiO 3
              BaCO 3 + 2HCl = BaCl 2 + H 2 O + CO 2 (H 2 CO 3)
            2. Растворимая соль + растворимая соль = нерастворимая соль + соль
              Pb(NO 3) 2 + K 2 S = PbS + 2KNO 3
              СaCl 2 + Na 2 CO 3 = CaCO 3 + 2NaCl
            3. Растворимая соль + щелочь = соль + нерастворимое основание
              Cu(NO 3) 2 + 2NaOH = 2NaNO 3 + Cu(OH) 2
              2FeCl 3 + 3Ba(OH) 2 = 3BaCl 2 + 2Fe(OH) 3
            4. Растворимая соль металла (*) + металл (**) = соль металла (**) + металл (*)
              Zn + CuSO 4 = ZnSO 4 + Cu
              Cu + 2AgNO 3 = Cu(NO 3) 2 + 2Ag
              Важно: 1) металл (**) должен находиться в ряду напряжений левее металла (*), 2) металл (**) НЕ должен реагировать с водой.

              Возможно, вам также будут интересны другие разделы справочника по химии:

3. Гидроксиды

Среди многоэлементных соединений важную группу составляют гидроксиды. Некоторые из них проявляют свойства оснований (основные гидроксиды) - NaOH , Ba (OH ) 2 и т.п.; другие проявляют свойства кислот (кислотные гидроксиды) - HNO 3 , H 3 PO 4 и другие. Существуют и амфотерные гидроксиды, способные в зависимости от условий проявлять как свойства оснований, так и свойства кислот - Zn (OH ) 2 , Al (OH ) 3 и т.п.

3.1. Классификация, получение и свойства оснований

Основаниями (основными гидроксидами) с позиции теории электролитической диссоциации являются вещества, диссоциирующие в растворах с образованием гидроксид-ионов ОН - .

По современной номенклатуре их принято называть гидроксидами элементов с указанием, если необходимо, валентности элемента (римскими цифрами в скобках): КОН - гидроксид калия, гидроксид натрия NaOH , гидроксид кальция Ca (OH ) 2 , гидроксид хрома (II ) - Cr (OH ) 2 , гидроксид хрома (III ) - Cr (OH ) 3 .

Гидроксиды металлов принято делить на две группы: растворимые в воде (образованные щелочными и щелочноземельными металлами - Li , Na , K , Cs , Rb , Fr , Ca , Sr , Ba и поэтому называемые щелочами) и нерастворимые в воде . Основное различие между ними заключается в том, что концентрация ионов ОН - в растворах щелочей достаточно высока, для нерастворимых же оснований она определяется растворимостью вещества и обычно очень мала. Тем не менее, небольшие равновесные концентрации иона ОН - даже в растворах нерастворимых оснований определяют свойства этого класса соединений.

По числу гидроксильных групп (кислотность) , способных замещаться на кислотный остаток, различают:

Однокислотные основания - KOH , NaOH ;

Двухкислотные основания - Fe (OH ) 2 , Ba (OH ) 2 ;

Трехкислотные основания - Al (OH ) 3 , Fe (OH ) 3 .

Получение оснований

1. Общим методом получения оснований является реакция обмена, с помощью которой могут быть получены как нерастворимые, так и растворимые основания:

CuSO 4 + 2KOH = Cu(OH) 2 ↓ + K 2 SO 4 ,

K 2 SO 4 + Ba(OH) 2 = 2KOH + BaCO 3 ↓ .

При получении этим методом растворимых оснований в осадок выпадает нерастворимая соль.

При получении нерастворимых в воде оснований, обладающих амфотерными свойствами, следует избегать избытка щелочи, так как может произойти растворение амфотерного основания, например,

AlCl 3 + 3KOH = Al(OH) 3 + 3KCl,

Al(OH) 3 + KOH = K.

В подобных случаях для получения гидроксидов используют гидроксид аммония, в котором амфотерные оксиды не растворяются:

AlCl 3 + 3NH 4 OH = Al(OH) 3 ↓ + 3NH 4 Cl.

Гидроксиды серебра, ртути настолько легко распадаются, что при попытке их получения обменной реакцией вместо гидроксидов выпадают оксиды:

2AgNO 3 + 2KOH = Ag 2 O ↓ + H 2 O + 2KNO 3 .

2. Щелочи в технике обычно получают электролизом водных растворов хлоридов:

2NaCl + 2H 2 O = 2NaOH + H 2 + Cl 2 .

(суммарная реакция электролиза)

Щелочи могут быть также получены взаимодействием щелочных и щелочноземельных металлов или их оксидов с водой:

2 Li + 2 H 2 O = 2 LiOH + H 2 ,

SrO + H 2 O = Sr (OH ) 2 .

Химические свойства оснований

1. Все нерастворимые в воде основания при нагревании разлагаются с образованием оксидов:

2 Fe (OH ) 3 = Fe 2 O 3 + 3 H 2 O ,

Ca (OH ) 2 = CaO + H 2 O .

2. Наиболее характерной реакцией оснований является их взаимодействие с кислотами - реакция нейтрализации. В нее вступают как щелочи, так и нерастворимые основания:

NaOH + HNO 3 = NaNO 3 + H 2 O ,

Cu(OH) 2 + H 2 SO 4 = CuSO 4 + 2H 2 O.

3. Щелочи взаимодействуют с кислотными и с амфотерными оксидами:

2KOH + CO 2 = K 2 CO 3 + H 2 O,

2NaOH + Al 2 O 3 = 2NaAlO 2 + H 2 O.

4. Основания могут вступать в реакцию с кислыми солями:

2NaHSO 3 + 2KOH = Na 2 SO 3 + K 2 SO 3 +2H 2 O,

Ca(HCO 3) 2 + Ba(OH) 2 = BaCO 3 ↓ + CaCO 3 + 2H 2 O.

Cu(OH) 2 + 2NaHSO 4 = CuSO 4 + Na 2 SO 4 +2H 2 O.

5. Необходимо особенно подчеркнуть способность растворов щелочей реагировать с некоторыми неметаллами (галогенами, серой, белым фосфором, кремнием):

2 NaOH + Cl 2 = NaCl + NaOCl + H 2 O (на холоду),

6 KOH + 3 Cl 2 = 5 KCl + KClO 3 + 3 H 2 O (при нагревании),

6KOH + 3S = K 2 SO 3 + 2K 2 S + 3H 2 O,

3KOH + 4P + 3H 2 O = PH 3 + 3KH 2 PO 2 ,

2NaOH + Si + H 2 O = Na 2 SiO 3 + 2H 2 .

6. Кроме того, концентрированные растворы щелочей при нагревании способны растворять также и некоторые металлы (те, соединения которых обладают амфотерными свойствами):

2Al + 2NaOH + 6H 2 O = 2Na + 3H 2 ,

Zn + 2KOH + 2H 2 O = K 2 + H 2 .

Растворы щелочей имеют рН > 7 (щелочная среда), изменяют окраску индикаторов (лакмус - синяя, фенолфталеин - фиолетовая).

М.В. Андрюxoва, Л.Н. Бopoдина